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Abstract 

Daniel Pastorek and Peter Albrecht: Risk Without Reward? The Introduction of Bitcoin spot ETFs 

Our study examines to what extent the introduction of Bitcoin spot exchange-traded funds (ETFs) 
affected Bitcoin’s properties, including market dynamics, volatility, returns, return distribution, and 
tracking errors. Using block bootstrap simulations, OLS regression, EGARCH modeling, and non-
parametric tests, we find that Bitcoin ETFs increase volatility and downside risk while leaving average 
returns unchanged. Return distribution shifts, including reduced skewness and kurtosis, suggest partial 
normalization, typically linked to greater liquidity and market participation. However, unlike traditional 
ETFs, Bitcoin ETFs introduce fail-to-deliver (FTD) occurrences—previously absent in Bitcoin markets—
which mitigate extreme price movements through delayed settlement. Tracking error analysis 
confirms that spot ETFs more accurately track Bitcoin’s price than futures-based ETFs. These findings 
offer critical insights into Bitcoin ETFs’ market effects, particularly regarding stability and investor 
behavior. 
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Introduction 

The launch of a traditional stock ETF typically meets well-established expectations based on decades 

of market behavior. Financial theory and empirical evidence indicate that these ETFs generally improve 

market stability and efficiency (Ben-David et al., 2017; Ben-David et al., 2018; Laborda et al., 2024). In 

contrast, the introduction of Bitcoin (BTC) spot ETFs in early 2024 presents a unique challenge. Bitcoin 

differs significantly from traditional stocks due to its high volatility, minimal regulation, and 

fundamentally distinct characteristics (Katsiampa, 2017; Corbet et al., 2018). Operating on a 

decentralized, peer-to-peer network, Bitcoin's price is influenced by factors such as speculation (Ciaian 

et al., 2018), regulatory changes (Auer and Claessens, 2018), and macroeconomic trends that are 

distinct from those affecting traditional stock markets (Bouri et al., 2017). 

The introduction of the Bitcoin spot ETF raises several critical questions for academic discussion. 

Primarily, has the launch of these ETFs made Bitcoin a less risky asset? The question is rooted in the 

expectation that ETFs generally stabilize prices and reduce volatility across various asset classes 

(Todorov, 2021). By enhancing liquidity and increasing market participation, especially from 

institutional investors, Bitcoin spot ETFs could potentially lower volatility. Theoretically, greater 

liquidity enables more market participants to absorb price fluctuations, thereby mitigating extreme 

price movements. Research on ETFs in other markets, such as commodities and stock indices, supports 

this hypothesis, showing that ETFs can indeed moderate volatility (Todorov, 2024). However, no 

studies have yet examined this effect in the context of Bitcoin spot ETFs. To address this gap, we 

empirically assess volatility and risk-return dynamics before and after the ETF introduction, utilizing 

block bootstrap analysis to evaluate distributional shifts and a regression model to quantify changes 

in return volatility. 

Furthermore, research on traditional financial markets suggests that ETF adoption can impact return 

dynamics by improving market efficiency (Israeli et al., 2017; Glosten et al., 2021). Increased liquidity 

and faster price corrections tend to reduce arbitrage opportunities, potentially leading to lower returns 

(Ben-David et al., 2018). However, it remains unclear whether this effect extends to Bitcoin, given its 

distinct market structure and the persistence of speculative activity. While some studies suggest that 

arbitrage opportunities in cryptocurrency markets have declined over time (Borri, 2019), inefficiencies 

remain due to price fragmentation across exchanges (Makarov and Schoar, 2020). We empirically 

assess whether the introduction of Bitcoin spot ETFs has influenced average returns, testing if 

increased market efficiency leads to a measurable change in Bitcoin's return levels through regression 

analysis. 
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Moreover, previous experiences in other markets indicate that the launch of ETFs tends to alter other 

statistical properties as well. By reducing extreme price fluctuations, particularly negative shocks, an 

ETF might theoretically decrease both kurtosis and skewness in Bitcoin’s return distribution. Research 

on derivative products and ETFs suggest that greater liquidity and market maturity often lead to return 

distributions that approximate normality, exhibiting reduced skewness and kurtosis (Poterba & 

Shoven, 2002). However, this effect may not straightforwardly apply to Bitcoin, which retains a high 

degree of speculative trading, as noted by Bouri et al. (2017). Using block bootstrap analysis and non-

parametric tests, we confirm a decrease in kurtosis and skewness following the introduction of Bitcoin 

ETFs. To explain these shifts, we examine the role of fail-to-deliver (FTD) occurrences, which, unlike in 

equity markets, were previously absent in Bitcoin trading. Leveraging statistical clustering techniques, 

we investigate whether FTDs contribute to reduced tail risk by smoothing extreme fluctuations 

through delayed settlement, introducing a novel mechanism to Bitcoin’s market structure. 

Lastly, while Bitcoin spot ETFs aim to closely track Bitcoin’s spot price through direct asset holdings, 

some tracking error remains inevitable, as observed in traditional stock ETFs (Aber et al., 2009). Broad-

market stock ETFs typically exhibit minimal tracking errors (0.05%–0.50% annually), while more volatile 

sector-specific ETFs, such as those tracking emerging markets, can experience tracking errors up to 

1.5% (Cremers et al., 2013; Elton et al., 2002). Given Bitcoin’s inherent volatility, we extend our analysis 

to quantify tracking errors in Bitcoin ETFs, comparing spot-based and futures-based structures to 

assess their relative tracking accuracy. 

1  Data and Methods 

1.1 Data 

To assess the Bitcoin ETF’s impact on Bitcoin’s risk-return profile, we employ a multi-method approach, 

combining block bootstrap, OLS regression, EGARCH modelling, and non-parametric Kolmogorov-

Smirnov (KS) and Mann-Whitney U tests. Such suite of methodologies enables us to capture potential 

shifts in returns, volatility clustering, and distributional changes, offering a comprehensive view of the 

ETF’s effect on Bitcoin’s risk dynamics. In these exercises, we use daily data from Bloomberg covering 

the period from the beginning of January 2023 till the end of December 2024, nearly a year after the 

introduction of Bitcoin spot ETFs and encompassing Bitcoin’s all-time price high. The data covers a 

recent and comparable pre-ETF period, ensuring that the analysis captures Bitcoin’s behavior under 

similar market conditions immediately preceding the introduction of spot ETFs. 

Additionally, we incorporate daily data on settlement failures, specifically fails-to-Deliver (FTD) reports 

from the U.S. Securities and Exchange Commission (SEC) for Bitcoin spot ETFs. These ETFs include IBIT, 
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GBTC, FBTC, ARKB, BITB, HOLD, BRRR, BTCO, EZBC, and BTCW. The regulatory filings document 

instances where ETF shares were not successfully delivered at settlement. While FTDs have been 

studied in traditional equity markets as indicators of market inefficiencies and short-selling constraints, 

their emergence in Bitcoin spot ETFs represents a novel development in cryptocurrency markets. The 

inclusion of FTD data enables a structured examination of potential liquidity constraints and market 

structure effects arising from these settlement failures. 

1.2 Risk and distribution analysis 

We employ the block bootstrap technique in order to simulate return distributions pre- and post-ETF, 

crucially preserving time-series autocorrelation by sampling overlapping blocks. Such simulation allows 

us to estimate key risk and distributional metrics: VaR and CVaR provides insights into tail risk, while 

skewness and kurtosis describes distributional asymmetry and tail characteristics, highlighting shifts in 

return distributions due to the ETF’s introduction. 

Moreover, we apply the Kolmogorov-Smirnov and Mann-Whitney U tests to evaluate distributional 

changes in Bitcoin returns by comparing cumulative and rank distributions for pre- and post-ETF 

periods. These non-parametric tests identify significant shifts in distribution shape and scale, and offer 

insights beyond mean change, particularly important for assets like Bitcoin that often deviate from 

normality. 

1.3 Volatility and return analysis 

A To analyse changes in average returns and volatility levels, we employ two simple OLS regression 

models incorporating a dummy variable, Period, to differentiate between pre-ETF (Period = 0) and 

post-ETF (Period = 1) periods. The Returns Model estimates the effect of the ETF launch on daily 

returns, where the coefficient β₁ represents the average pre-ETF return and captures the incremental 

return effect following the ETF’s introduction: 

𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑡 = 𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝜀𝑡. (1) 

For volatility, the Absolute Returns Model used the absolute value of returns as a proxy, where α0 

denotes average pre-ETF volatility, and α₁ measures post-ETF changes: 

|𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑡| = 𝛼0 + 𝛼1𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝜀𝑡. (2) 

To capture time-varying volatility and volatility clustering, we employ separate Exponential 

Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) models for the pre- and post-ETF 

periods. The EGARCH(1,1) specification is suitable as it allows for asymmetric responses to shocks, 
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capturing the distinctive behaviour of volatility in response to positive and negative returns (Yildirim 

and Bekun, 2023): 

ln(𝜎𝑡
2) = 𝜔 + 𝛽 ln(𝜎𝑡−1

2 ) + 𝛼
|𝜀𝑡−1|

𝜎𝑡−1
+ 𝛾

𝜀𝑡−1

𝜎𝑡−1
. (3) 

where 𝜔 is the constant term in the variance equation; 𝜎𝑡
2 is the conditional variance at time t. 𝜀𝑡 is 

the residual error term at time t; 𝛾 is the coefficient for the sign of the lagged standardized residuals, 

capturing the asymmetric effect of shocks on volatility; 𝛼 represents the coefficient for the magnitude 

of the lagged standardized residuals, capturing the symmetric effect of shocks on volatility, and 𝛽 is 

the coefficient for the lagged conditional variance, indicating volatility persistence. 

  By comparing the estimated coefficients - specifically, ω (the baseline volatility component), 

α₁ (shock sensitivity), and β₁ (volatility persistence) - across periods, we analyse potential shifts in 

volatility dynamics that may be associated with the ETF’s introduction. The approach enables us to 

observe changes in both the persistence and asymmetry of volatility, providing a more nuanced view 

of how market conditions and investor sentiment might evolve in response to the availability of Bitcoin 

ETFs. 

1.4  Fail-to-Deliver Occurrences and Market Stability 

A To analyze the role of fail-to-deliver (FTD) occurrences in Bitcoin ETFs, we examine daily FTD 

quantities alongside Bitcoin price and volume data. Given the T+2 settlement cycle, FTD data are 

shifted backward by two business days to align with the original trading activity that led to settlement 

failures.  

Extreme price movements are defined dynamically based on Bitcoin’s historical volatility rather than a 

fixed return threshold. Specifically, we compute a 30-day rolling mean and standard deviation of 

Bitcoin’s daily returns and classify extreme price movements as days when absolute returns exceed 

two standard deviations from the rolling mean. Such an approach provides a more robust identification 

of large price swings, as it adjusts for changing market volatility and avoids the limitations of an 

arbitrary threshold. The methodology is consistent with prior financial econometric research (e.g., 

Pastorek et al., 2023) that defines extreme events relative to recent volatility regimes (Albrecht and 

Kočenda, 2024). To classify periods of heightened volatility, we construct a 30-day rolling volatility 

measure and define high volatility periods as the top 20% of observations. High trading volume days 

are similarly identified as those in the top 20% of daily Bitcoin trading volume. These percentile-based 

thresholds balance sample size considerations while capturing periods of significant market activity.  
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To test whether FTD occurrences are associated with specific market conditions, we conduct 

independent two-sample t-tests. First, FTD quantities on days with extreme price movements are 

compared against standard trading days to assess whether settlement failures are more frequent 

during large price fluctuations. Second, we examine FTD levels across high- and low-volatility periods 

to determine whether settlement failures correspond to shifts in market uncertainty. The method 

provides statistical evidence on whether FTDs are more likely to occur under specific market stress 

conditions. 

To further assess whether FTD occurrences are driven by liquidity constraints or arise as a response to 

volatility, we estimate an ordinary least squares (OLS) regression model with log-transformed FTD 

quantities as the dependent variable. The model specification is given as: 

log(𝐹𝑇𝐷𝑡) = 𝛽0 + 𝛽1𝐻𝑖𝑔ℎ𝑉𝑜𝑙𝑢𝑚𝑒𝑡 + 𝛽2𝐻𝑖𝑔ℎ𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 

+𝛽3(𝐻𝑖𝑔ℎ𝑉𝑜𝑙𝑢𝑚𝑒𝑥𝐻𝑖𝑔ℎ𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑡 + 𝜀𝑡 
(4) 

where High Volume is a binary variable indicating whether Bitcoin’s trading volume is in the top 20% 

of observations; High Volatility is a binary indicator for rolling volatility in the highest 20% of the 

sample, and the interaction term captures whether FTD occurrences intensify disproportionately 

under simultaneous high volume and high volatility conditions. The log transformation of FTD 

quantities ensures that the dependent variable exhibits a more normal distribution, improving the 

robustness of the regression estimates. By evaluating the statistical significance and magnitude of 

these coefficients, the model assesses whether settlement failures primarily reflect market liquidity 

constraints or function as a stabilizing mechanism in response to volatility shocks. 

1.5 Identification of the tracking error 

Additionaly, we utilize daily data spanning from January 2021 to December 2024 in order to analyze 

the tracking error of Bitcoin ETFs and further explore potential changes in correlation between Bitcoin 

and the broader financial market following the introduction of spot ETFs. The dataset captures 

Bitcoin’s price and volume, S&P 500 index data, and two categories of Bitcoin ETFs: spot-based and 

futures-based. The extended period provides a robust pre- and post-ETF approval comparison, 

enabling a detailed investigation of how these ETFs perform relative to the underlying asset and their 

potential market impact. 

We calculate tracking errors for each ETF as the rolling 30-day standard deviation of the 

difference in returns between each ETF and Bitcoin. Average tracking errors for spot and futures ETFs 

are computed separately and compared over time to assess whether spot ETFs exhibit lower tracking 

error, as suggested by literature on similar asset classes. 
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2 Results 

In this section, we examine how the observed effects of Bitcoin ETFs align with expectations derived 

from research on traditional ETFs in the stock and commodity markets (see Todorov, 2024). 

Specifically, we assess the extent to which Bitcoin spot ETFs reflect the anticipated impacts commonly 

associated with ETF introduction, including: 1) reduction in volatility through enhanced market 

liquidity and participation, 2) reduced returns resulting from greater market efficiency, 3) alterations 

in the distributional properties of returns, particularly skewness and kurtosis, 4) risk of tracking error. 

Table 1: Hypothesized and Observed Effects of Bitcoin Spot ETFs on Bitcoin 

Effect Area Expectation Estimated Resulting Effect 

Reduction in Volatility ▼ Decrease ▲ Increase 

Reduced Returns (Market 

Efficiency) 

▼ Decrease ↔ Stable 

Changes in Return Distribution ↔ Normalization ↔ Partial normalization 

Tracking Error ▼ Decrease ▼ Decrease 

2.1 Risk-return properties 

In Figure 1, we present histograms of final investment values using a block bootstrap method. The 

figure reveals a decrease in both skewness and kurtosis in the post-ETF period. Table 2 corroborates 

these findings, showing lower skewness and kurtosis metrics and higher downside risk, as indicated by 

more negative CVaR and VaR values. Consequently, we cannot confirm the initial hypothesis of 

reduced volatility, which has been observed in other markets like stocks and commodities (Todorov, 

2024). However, both Figure 1 and Table 2 confirm a decrease in skewness and kurtosis. These 

statistical changes impact several financial factors. Reduced skewness and kurtosis enhance the 

predictability of returns (Poterba and Shoven, 2002) and extreme risks (Bouri et al., 2017). Additionally, 

the improved normality of the data indicates a more mature market (Ben-David et al., 2018) and 

enhances the efficiency of diversification strategies (Corbet et al., 2019). 
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Figure 1: Distribution of Final Values for Bitcoin Pre- and Post-ETF Periods 

 

Note: The figure presents histograms of simulated final investment values over a 30-month horizon for Bitcoin pre- and post-
ETF periods. Using a block bootstrap methodology with a 6-month block size, we generate 5000 resampled returns series to 
capture time-series dependence, critical for maintaining Bitcoin's volatility clustering and autocorrelation. The final values 
represent cumulative returns over the horizon, expressed as multiples of the initial investment. Value at Risk (VaR) and 
Conditional Value at Risk (CVaR) at the 95% confidence level capture tail risk, while mean, median, skewness, and kurtosis 
summarize the distribution's central tendency, asymmetry, and tail behaviour. 

Furthermore, by employing a combination of block bootstraps, OLS regression, GARCH models, and 

non-parametric distributional tests, we examine shifts in Bitcoin's risk-return dynamics. The block 

bootstrap analysis (Figure 1 and Table 2) reveals higher values for Value at Risk (VaR) and Conditional 

Value at Risk (CVaR) in the post-ETF period, indicating an increased likelihood of significant losses. Such 

a rise in downside risk may could be linked to intensified speculative activity, a well-documented driver 

of Bitcoin’s price dynamics (Ciaian et al., 2018). 

Table 2: Distribution Metrics for Bitcoin Returns Pre- and Post-ETF 

Metrics Pre-ETF Distribution Post-ETF Distribution 

Mean 0.0933 0.0806 

Median 0.0728 0.0655 

VaR (5%) -0.1175 -0.1542 

CVaR (5%) -0.1599 -0.2063 
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Skewness 0.7959 0.5100 

Kurtosis 4.1770 3.4513 

Note: The table presents key distributional metrics for Bitcoin returns, calculated using a block bootstrap approach with 5,000 
resamples. The metrics include Value at Risk (VaR) and Conditional Value at Risk (CVaR) at the 5% level, mean, median, 
skewness, and kurtosis for the pre-ETF and post-ETF periods. 

Moreover, we analyze the returns as the ETF adoption tends to be followed by reduced returns due to 

iincreased market efficiency. Such findings were confirmed for stock markets (Israeli et al., 2017), but 

the effect of BTC ETF introduction remains a question. The OLS regression results indicated no 

substantial change in average returns, as the post-ETF coefficient on the period dummy was not 

statistically significant (β1 = -0.0007) (see Table 3). However, the regression model for volatility, proxied 

by absolute returns, showed a statistically significant increase in daily volatility (α1 = 0.0047) post-ETF, 

which suggests that the post-era of ETF launch has amplified price fluctuations rather than stabilized 

them (Table 3). Therefore, in contrast to one of pivotal studies on stocks by Todorov (2021), we find 

that the introduction of Bitcoin ETFs increased its risk profile while leaving average returns unchanged. 

Table 3: Regression Results for Returns and Volatility Models Pre- and Post-ETF Periods 

Model Coefficient Estimate 
Std. 

Error 

t-

Statistic 
p-value 

Observations 

Returns 

Model 
Constant (β0) 0.0030 0.0013 2.31 0.02** 729 

 

Period Dummy 

(β1) 
-0.0007 0.0019 -0.37 0.71 729 

 
R-squared 0.0002 

   
729 

Volatility 

Model 
Constant (α0) 0.0156 0.0010 15.60 <0.01*** 729 

 

Period Dummy 

(α1) 
0.0047 0.0014 3.36 <0.01*** 729 

 
R-squared 0.0159 

   
729 

Note: This table reports the results of two Ordinary Least Squares (OLS) regression models that examine the impact of the 
Bitcoin ETF on average returns and volatility. The Returns Model regresses daily returns on a constant term (β₀) and a period 
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dummy variable (β₁) that distinguishes between pre-ETF and post-ETF periods. dSignificance levels are marked as ***p < 0.01, 
**p < 0.05, and *p < 0.1. 

Following the previous results, we employ the EGARH1 models to account for the persistence of 

volatility and sensitivity of previous shocks. These EGARCH(1,1) models for the pre and post-ETF 

periods (Table 4) further highlight a shift in volatility dynamics. The pre-ETF model exhibits limited 

volatility persistence, as evidenced by the statistically insignificant β₁ coefficient (β₁ = 0.0848, p = 

0.624). Additionaly, it indicates that volatility shocks dissipated quickly. In contrast, the post-ETF 

EGARCH model revealed substantial volatility persistence (β₁ = 0.8489, p < 0.001), suggesting that price 

fluctuations became more prolonged following the ETF introduction. Moreover, the statistically 

significant α₁ coefficient (α₁ = 0.2290, p = 0.028) in the post-ETF period indicates heightened sensitivity 

to past market shocks. These results underscore a structural change in Bitcoin's volatility profile, which 

could be attributed to the ETF’s impact on market depth, potentially drawing institutional investors 

whose trading behaviors contribute to sustained volatility clustering. Such results are in contrast to 

prior expectations derived from other markets (Table 1) (Ben-David et al., 2017; Laborda et al., 2024). 

Table 4: EGARCH Model Parameter Estimates for Pre- and Post-ETF Periods 

Metric Parameter Estimate Std. 

Error 

t-

Statistic 

p-value Observations 

EGARCH Pre-

ETF 
μ 0.1706 0.115 1.485 0.138 374 

 
ω 1.5471 0.339 4.558 <0.01*** 374 

 
α₁ 0.3751 0.152 2.465 0.014* 374 

 
β₁ 0.0848 0.173 0.490 0.624 374 

EGARCH Post-

ETF 
μ 0.2225 0.137 1.625 0.104 355 

 
ω 0.3148 0.196 1.609 0.108* 355 

 
α₁ 0.2990 0.104 2.196 0.028* 355 

                                                           
1 We employ EGARCH due to its advantages in modeling the asymmetric effects (Yildirim and Bekun, 2023). 
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β₁ 0.8489 0.096 8.875  <0.01*** 355 

Note: The table presents the estimated parameters from the Exponential Generalized Autoregressive Conditional 
Heteroskedasticity (EGARCH) model, fitted separately for the pre-ETF and post-ETF periods. The parameters ω (omega), α₁ 
(alpha), and β₁ (beta) represent the model's conditional volatility dynamics, with ω capturing the constant component of 
variance, α₁ representing the impact of past shocks on volatility, and β₁ indicating volatility persistence. Significance levels are 
marked as ***p < 0.01, **p < 0.05, and *p < 0.1. 

Finally, we conduct the Kolmogorov-Smirnov (KS) and Mann-Whitney U tests to account for shifts in 

return distributions. As outlined by Poterba and Shoven (2002), return distribution provides 

information about the risk profile of the investment. Information about the distribution of returns can 

provide helpful insights for portfolio optimization. Following the results (Table 5), we confirm a 

significant shift in return distributions between the pre and post-ETF periods (KS statistic = 0.1060, p < 

0.001). It indicates that the introduction of the Bitcoin ETF has notably altered Bitcoin's risk-return 

profile. However, the Mann-Whitney U test, which evaluates median differences, found no statistically 

significant change between the two periods (p = 0.7706). Together, these results suggest that while 

the ETF's introduction has led to distributional changes, particularly increased volatility and downside 

risk, these effects are not reflected in a shift in central tendencies, such as median returns (see Table 

5). 

Table 5: Non-Parametric Tests for Distributional Differences 

Test Statistic p-Value Observations Interpretation 

Mann-Whitney 

U Test 

67214 0.7706 Pre-ETF: 374, Post-

ETF: 355 

No significant difference in return 

distributions 

Kolmogorov-

Smirnov (KS) 

0.1060 <0.01*** Pre-ETF: 374, Post-

ETF: 355 

Significant shift in return 

distributions 

Note: The Mann-Whitney U test to evaluate median differences in return distributions, while the Kolmogorov-Smirnov test 
assess shifts in cumulative distributions, both comparing pre- and post-ETF periods. 

2.2 Existence of fail-to-deliveries 

The observed shifts in Bitcoin's statistical properties raise important questions about their underlying 

drivers. One of the aims of Bitcoin ETFs is to enhance market transparency and reduce manipulative 

practices, such as wash trading, by introducing higher standards of regulatory oversight and 

compliance. In traditional markets, ETFs are linked to increased transparency and reduced 

manipulation (Fotak et al., 2014). However, Bitcoin ETFs employing fail-to-deliver (FTD) mechanisms 

(or synthetic positions to meet demand without direct asset holdings) may introduce new risks, 

including counterparty exposure and potential market stress vulnerabilities (Pastorek et al., 2023). In 



  

11 
 

this section, we examine the emergence of FTD occurrences in the Bitcoin market and their 

implications for market dynamics. 

Figure 2: Bitcoin Price with Extreme FTD Quantity Overlay (Log Scale) and Volume 

Notes: The figure presents Bitcoin’s daily closing price alongside extreme fail-to-deliver (FTD) quantities, shown in a log scale, 
from January to December 2024. The black line represents the Bitcoin price, while the grey bar plot at the bottom indicates 
trading volume (scaled in hundreds of millions). The grey dots denote extreme FTD quantities, defined as values exceeding 
twice the standard deviation of typical FTD quantities after removing outliers. Additionally, FTD data are shifted backward by 
the standard settlement period to align with the trading conditions that precipitate settlement failures. This adjustment 
accounts for the lag between trading activity and FTD reporting, allowing for more accurate alignment of extreme FTD events 
with underlying market conditions, particularly in relation to Bitcoin's price trends and trading volume. 

In Figure 2, we illustrate distinct clusters of extreme fail-to-deliver (FTD) occurrences that align with 

significant movements in Bitcoin’s price, particularly during phases of upward trends or heightened 

volatility. Notably, the early and mid-2024 periods feature several events with extreme FTD 

occurrences coinciding with pronounced price increases and fluctuations. The clustering suggests that 

periods of rapid price movement may create conditions under which market participants struggle to 

settle trades, leading to elevated FTD levels. Conversely, during more stable price periods or moderate 

downward trends, the figure reveals fewer extreme FTDs. It implies that calmer markets with reduced 

price pressure and volatility are associated with lower FTD occurrences, likely due to steadier market 

dynamics and enhanced liquidity. These findings align with the results from Figure 1 and Table 2. In 

Figure 1 and Table 2, we found that despite heightened volatility after the ETF introduction, the 

normality of Bitcoin improved as the ETF led to lower skewness and kurtosis. Such results indicate that 

Bitcoin obtained less extreme values after introducing the ETF. The occurrence of FTDs further 

evaluates this finding – when Bitcoin price starts to decrease, FTDs occur and the settlement is spread 

over several days. It complements previous research stating that FTDs may lead to lower price 

extremes (Fotak et al., 2014). 
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The analysis of fail-to-deliver (FTD) occurrences in Bitcoin ETFs reveals important insights into their 

relationship with trading volume, volatility, and price dynamics. The volume data provides a clear 

indication that FTD events are strongly linked to high trading activity. Specifically, elevated FTD levels 

consistently coincide with spikes in trading volume, particularly during periods of heightened market 

activity, such as the early 2024 price surge, mid-year fluctuations, and the late 2024 rally. To further 

examine whether high volume is the primary driver of FTD occurrences or whether volatility also plays 

a role, we conduct a series of statistical tests. 

The results of the t-tests (Table 7) show a significant increase in FTD levels on high trading volume 

days, confirming that trading intensity is a primary driver of settlement failures. In contrast, FTD levels 

do not differ significantly between high- and low-volatility periods, suggesting that market turbulence 

alone does not exacerbate settlement failures when decoupled from high trading activity. The finding 

implies that FTDs are more likely a response to liquidity constraints driven by trading demand rather 

than a reaction to broader market uncertainty. 

Table 6: OLS Regression Results for FTDs 

Variable Coefficient Std Error t-value p-value 

Intercept 4.8568 0.344 14.116 0.000*** 

High Volume 3.2302 0.750 4.309 0.000*** 

High Volatility 0.9512 0.780 1.219 0.223 

High Volume and Volatility -2.9138 1.961 -1.486 0.138 

Notes: This table presents the Ordinary Least Squares (OLS) regression results for fail-to-deliver (FTD) quantities, which are 
log-transformed to improve model fit and normalize the distribution. The model examines the effects of high trading volume, 
high volatility, and their interaction on FTD levels. Significance levels are marked as ***p < 0.01, **p < 0.05, and *p < 0.1. 

To formally assess the impact of high trading volume and volatility on FTD occurrences, we estimate 

an OLS regression model (Table 6). The regression results reinforce the earlier findings, indicating that 

the coefficient for high trading volume is statistically significant and substantial, confirming a strong 

positive relationship between trading activity and FTD levels. By contrast, the coefficients for high 

volatility and the interaction between volume and volatility are statistically insignificant. It suggests 

that volatility alone or in combination with high trading volume does not meaningfully influence FTD 

occurrences. These results establish that high-volume trading days lead to increased FTD activity, while 

high volatility in isolation does not. 
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Table 7: T-Test Results for FTDs and Bitcoin Market Metrics 

Metric p-value 

P-value for Significant Price Movements <0.01*** 

P-value for High vs Low Volatility 0.6638 

Notes: This table presents the results of two t-tests examining the relationship between fail-to-deliver (FTD) quantities and 
key Bitcoin market metrics. The P-value for Significant Price Movements tests whether FTD levels differ significantly on days 
with substantial Bitcoin price movements (returns exceeding 2%), compared to days without such movements. The P-value 
for High vs Low Volatility tests whether FTD levels vary between periods of high and low Bitcoin market volatility, defined by 
the top and bottom 20% of volatility values. Significance levels are marked as ***p < 0.01, **p < 0.05, and *p < 0.1. 

These results have significant implications for understanding the role of FTDs in Bitcoin ETF markets. 

The strong association between high trading volume and FTD occurrences highlights that periods of 

elevated market participation, possibly driven by speculative trading or shifts in sentiment, place strain 

on settlement systems, leading to an increase in FTD levels. Importantly, the lack of a significant 

relationship between FTDs and price volatility suggests that FTDs do not arise merely as a reaction to 

uncertainty or market instability but are more closely tied to transactional demand. 

Moreover, the absence of FTD spikes during significant price movements—despite their strong link to 

trading volume—points to a potential stabilizing effect of FTD mechanisms. In markets without such 

mechanisms, one might expect sharp price movements to follow periods of intense trading due to 

liquidity imbalances. However, the findings suggest that FTDs help spread settlement obligations over 

time, mitigating the immediate impact of high trading activity on price dynamics. This indicates that 

FTDs may serve as a buffer, reducing the likelihood of extreme price fluctuations that might otherwise 

occur during periods of high volume. 

2.3 Tracking error analysis 

Consequently, we examine the tracking errors between Bitcoin spot ETFs and Bitcoin futures-based 

ETFs (Figures 3 and 4). The results reveal significant differences, with spot ETFs consistently exhibiting 

lower tracking errors (Figure 4). Spot ETFs, which replicate the underlying Bitcoin price through direct 

asset holdings, achieve average 30-day rolling tracking errors below 0.03. It indicates a high degree of 

alignment with Bitcoin’s spot price. The finding is consistent with prior research on ETF tracking fidelity, 

which shows that direct asset-holding structures generally have reduced tracking errors, especially in 

highly volatile asset classes (Elton et al., 2002; Cremers et al., 2013). The low tracking error observed 

here suggests that Bitcoin spot ETFs are effective at minimizing tracking deviations despite the inherent 

volatility and liquidity constraints associated with Bitcoin. 
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Figure 3: Individual 30-Day Rolling Tracking Error of Bitcoin Spot ETFs Compared to Bitcoin Spot Price 

 

Note: The figure illustrates the 30-day rolling tracking error for individual Bitcoin spot ETFs relative to the Bitcoin spot price 
from January 2024 to December 2024. The tracking error, computed as the rolling standard deviation of the return differential 
between each ETF and Bitcoin, reflects deviations from the spot price, indicating potential inefficiencies in ETF replication of 
Bitcoin's price movements. 

In contrast, futures-based ETFs show higher average tracking errors, frequently exceeding those of 

spot ETFs by 0.01 to 0.02, particularly during periods of elevated volatility. The average difference in 

tracking error (Futures ETFs - Spot ETFs) represents the value close to 0.004. Such divergence is likely 

attributable to structural complexities in futures-based ETFs, such as rolling costs, contango, and 

backwardation, which can impede accurate price replication as observed for different markets 

(Milonas and Henker, 2001). The findings align with broader evidence from commodities and other 

asset classes where futures-based ETFs often experience larger tracking discrepancies relative to spot 

ETFs, reflecting inefficiencies introduced by derivative exposures. 

The results suggest that while both ETF types provide investors with Bitcoin exposure, spot ETFs offer 

a more precise representation of Bitcoin’s underlying price dynamics. The lower tracking error 

associated with spot ETFs underscores the advantage of direct asset holdings in achieving tracking 

accuracy. 
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Figure 4: Average 30-Day Rolling Tracking Error: Bitcoin Spot ETFs vs. Bitcoin Futures ETFs 

 
Note: The figure compares the 30-day rolling average tracking error between Bitcoin spot ETFs and Bitcoin futures-based ETFs 
from January 2024 to December 2024. Tracking error is calculated as the rolling standard deviation of the return differential 
relative to the Bitcoin spot price, reflecting how closely each ETF type tracks Bitcoin's price movements. 

Conclusions 

Our study investigates the extent to which the introduction of Bitcoin ETFs has affected Bitcoin as an 

asset. We offer a thorough analysis of how Bitcoin spot ETFs influence Bitcoin's market dynamics, 

focusing on volatility, returns, return distribution, and tracking errors. Contrary to expectations based 

on traditional ETFs, the introduction of Bitcoin spot ETFs has been associated with increased volatility 

and heightened downside risk, as reflected in higher Value at Risk (VaR) and Conditional Value at Risk 

(CVaR) metrics. It suggests that, unlike in equity markets, where ETF adoption typically reduces 

volatility through enhanced liquidity and market depth, Bitcoin’s market remains highly sensitive to 

speculative activity, even in the presence of institutional investments. As a result, the increase in 

volatility without a corresponding rise in returns suggests that the introduction of Bitcoin ETFs has 

deteriorated Bitcoin’s long-term risk-return trade-off. 

In terms of return distribution, our findings suggest a partial normalization of Bitcoin’s statistical 

properties. The post-ETF period exhibits lower skewness and kurtosis, suggesting a reduction in 

extreme price fluctuations and tail risk. While Bitcoin continues to exhibit the characteristics of a 

speculative asset, the introduction of ETFs has contributed to a more structured trading environment. 

Our results indicate that fail-to-deliver (FTD) occurrences contributed in this normalization process. 

Unlike in traditional markets, where FTDs often signal liquidity constraints or settlement inefficiencies, 

their emergence in Bitcoin ETFs appears to function as a stabilizing mechanism. By deferring 

settlement over multiple days, spot FTDs prevent extreme price movements that might otherwise 

occur in a purely spot-driven market. It suggests that the presence of FTDs could mitigate the impact 
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of large buy or sell orders, spreading settlement obligations over time and dampening immediate price 

distortions. 

Moreover, the tracking error analysis highlights a key advantage of Bitcoin spot ETFs over their futures-

based counterparts. Spot ETFs demonstrate superior tracking accuracy, maintaining a closer alignment 

with Bitcoin’s price compared to futures ETFs, which suffer from inefficiencies related to roll costs, 

contango, and backwardation. The result aligns with prior research on ETF replication efficiency, 

confirming that direct asset holdings offer a more precise reflection of underlying price dynamics in 

highly volatile asset classes. 

While these findings provide valuable insights into the role of Bitcoin spot ETFs in market evolution, 

this study has certain limitations. The relatively short post-ETF observation period may not fully 

capture long-term adjustments in trading behavior and market structure. Future research should 

extend the analysis to assess whether the observed volatility increase persists over time or diminishes 

as the market further integrates institutional participation. Additionally, incorporating microstructural 

data, such as order book dynamics and high-frequency trading behavior, could offer a deeper 

understanding of how Bitcoin ETFs influence market liquidity, price discovery, and arbitrage efficiency. 

Overall, this study contributes to the growing literature on the financialization of cryptocurrencies by 

offering novel insights into the effects of Bitcoin ETFs. The findings underscore the unique challenges 

and opportunities introduced by ETFs in digital asset markets, emphasizing the need for continued 

research into their broader implications for price stability, market maturity, and investor behavior. 
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